Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ping Wang, Xiao-He Chu and Wei-Ke Su*

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: suweike@zjut.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.05 \AA$
R factor $=0.082$
$w R$ factor $=0.173$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(Z)-4-(4-Methoxybenzylidene)-2-methyl-sulfanyl-3-phenethyl-1 H -imidazol-5(4H)-one

The title molecule, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, exits in the Z form and the five-membered imidazole ring and the benzene ring of the 4 methoxybenzylidene moiety are almost coplanar. Short intramolecular contacts $[\mathrm{C} \cdots \mathrm{S}=3.138(4) \AA$ and $\mathrm{C} \cdots \mathrm{N}=$ $3.060(4) \AA$] indicate the presence of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intramolecular hydrogen bonds.

Comment

Imidazolinone derivatives have been reported to possess a broad spectrum of pharmacological activities including anticonvulsant (Mehta et al., 1981), antiviral (El-Barbary et al., 1994) and antitumour (Khodair et al., 1998) activities, and exhibit various biological properties, such as fungicidal and herbicidal activities (Yang et al., 2004). The crystal structure of a closely related compound, namely (Z)-5-benzylidene-3-phenethyl-2-thioxoimidazolidin-4-one (Wu et al., 2005), has been reported recently.

(I)

The title compound, (I), contains three essentially planar rings. The dihedral angle between the five-membered imidazolinone ring ($\mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 11 / \mathrm{N} 1 / \mathrm{N} 2$) and the benzene ring of the 4-methoxybenzylidene moiety (C13-C18) is $2.60(1)^{\circ}$.

Short intramolecular $\mathrm{C} \cdots \mathrm{S}$ and $\mathrm{C} \cdots \mathrm{N}$ contacts (Table 1) may indicate the presence of weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 1). There are no significant intermolecular hydrogen-bond interactions.

Experimental

A mixture of 5-(4-methoxybenzylidene)-3-phenethyl-2-thioxo-imidazol-4-one (0.77 mmol) in dry acetonitrile (40 ml), methyl iodide $(1.54 \mathrm{mmol})$ and solid potassium carbonate $(1.3 \mathrm{mmol})$ was stirred for 3 h at room temperature and then filtered. The filtrate was concentrated under reduced pressure, and the residue was recrystallized from dichloromethane and petroleum ether $(1: 4 v / v)$ to give the title compound in 68% yield (m.p. 402-404 K) (Yang et al., 2004). Single crystals suitable for X-ray data collection were obtained by slow evaporation of an ethanol solution of (I). IR (KBr): 3021, 2927, 1698, 1637, 1595, 1500, $1452 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (chloroform- d, δ): 8.14-7.20 $(m, 9 \mathrm{H}), 6.94(s, 1 \mathrm{H}), 3.85(s, 3 \mathrm{H}), 3.80(t, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.96(t, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}$), $2.72(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (chloroform- d): 169.77, 163.34, 160.94, 137.68, 136.77, 133.70, 128.84, 128.59, 127.43, 126.69, 123.94, 114.18, 55.28, 42.28, 35.01, 12.98.

Received 26 May 2005 Accepted 14 June 2005 Online 24 June 2005

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=352.44$
Triclinic, $P \overline{1}$
$a=9.7833$ (10) \AA
$b=9.9027$ (10) A
$c=10.2853$ (11) \AA
$\alpha=101.957$ (2) ${ }^{\circ}$
$\beta=104.951(2)^{\circ}$
$\gamma=101.511(2)^{\circ}$
$V=907.46(16) \AA^{3}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.950, T_{\text {max }}=0.975$
6756 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.059 P)^{2} \\
&+0.3033 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

$Z=2$
$D_{x}=1.290 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1514 reflections
$\theta=2.6-24.3^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.27 \times 0.21 \times 0.13 \mathrm{~mm}$

3264 independent reflections
2723 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-11 \rightarrow 12$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.082$
$w R\left(F^{2}\right)=0.173$
$S=1.29$
3264 reflections
228 parameters
H -atom parameters constrained

Figure 1
The formula unit of (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level. Dashed lines indicate weak hydrogen-bond interactions.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors thank the Commission of Science and Technology of Zhejiang Province (grant No. 2003 C24004), and the School of Chemistry and Materials Science, Wenzhou University, China, for supporting this work.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and XP. Bruker AXS Inc., Madison, Winsonsin, USA.
El-Barbary, A. A., Khodair, A. I., Pedersen, E. B. \& Nielsen, C. (1994). J. Med. Chem. 37, 73-77.
Khodair, A. I., Bertrand, P. (1998). Tetrahedron, 54, 4859-4872.
Mehta, N. B., Diuguid, C. A. R. \& Soroko, F. E. (1981). J. Med. Chem. 24, 465468.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wu, H.-Y., Huang, X.-B., Ding, J.-C., Liu, M.-C. \& Hu, M.-L. (2005). Acta Cryst. E61, o497-499.
Yang, F.-L., Liu, Z.-J., Huang, X.-B. \& Ding, M.-W. (2004). J. Heterocycl. Chem. 41, 77-83.

